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Abstract

Structural vector-autoregressive models are potentially very useful tools for
guiding both macro- and microeconomic policy. In this paper, we present
a recently developed method for exploiting non-Gaussianity in the data for
estimating such models, with the aim of capturing the causal structure un-
derlying the data, and show how the method can be applied to both micro-
economic data (processes of firm growth and firm performance) as well as
macroeconomic data (effects of monetary policy).
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1 Introduction

Since the 1980s structural vector autoregressions (SVAR models) have become a
prevalent tool to empirically analyze dynamic economic phenomena. Their un-
derlying model is the vector autoregression (VAR model), in which a system of
variables is formalized as driven by their past values and a vector of random dis-
turbances. This reduced form representation is typically used for the sake of es-
timation and forecasting. This VAR form, however, is not sufficient to perform
economic policy analysis: it does not provide enough information to study the
causal influence of various shocks on the key economic variables, nor to use the
estimated coefficients to predict the effect of an intervention. Thus SVAR models
are meant to furnish the VAR with structural information so that one can recover
the causal relationships existing among the variables under investigation, and trace
out how economically interpreted random shocks affect the system.

Where does this structural information come from? The common approach
is that it must be derived from economic theory or from institutional knowledge
related to the data generating mechanism (Stock and Watson, 2001). An alterna-
tive approach is that, using various assumptions, statistically inferred information
about the probability distribution of the estimated (reduced form) VAR residuals
can be helpful in identifying the structural model. This line of research relies on
graphical causal models, as defined by Spirtes ef al. (2000) and Pearl (2000).

Standard graph-theoretic techniques permit the researcher to infer the contem-
poraneous causal relations sufficient to identify the SVAR, starting from condi-
tional independence tests on the residuals (Swanson and Granger 1997; Bessler
and Lee 2002; Bessler and Yang 2003; Demiralp and Hoover 2003; Moneta 2004,
2008; Demiralp et al. 2008). Such methods require the user to make various as-
sumptions about the data generating process. Typical assumptions are that (i) the
residuals obey the conditional independence relationships which are entailed by
the true underlying contemporaneous causal graph (causal Markov condition), (ii)
there are no additional independence relationships in the residuals over and above
those entailed by the Markov condition (faithfulness condition), (iii) there are no
unobserved confounders (causal sufficiency condition), and (iv) there are no con-
temporaneous causal directed cycles (acyclicity condition). In much empirical
work, it is additionally assumed that (v) disturbances have a normal distribution.

As has been extensively discussed elsewhere, these assumptions are quite
strong and can often be violated in real data. It would thus be quite beneficial
if one could estimate the SVAR model using somewhat weaker conditions. For-
tunately, if the data is to some degree non-Gaussian, which is not uncommon
in many econometric studies (Lanne and Saikkonen, 2009; Lanne and Liitke-
pohl, 2010), one can rely on methods that can exploit this non-Gaussianity to get
stronger identification results, in particular without having to rely on the (often
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criticized) faithfulness assumption (Shimizu et al. 2006; Hyvérinen et al. 2008).

In this contribution, we present this novel family of methods to the economet-
rics community and discuss its relationship to previous methods for estimating
SVAR models. Furthermore, we give two extended examples of applications to
micro- and macroeconomic datasets; these examples demonstrate both the power
and some limitations of the procedure. Our hope is that this will further the adop-
tion of these novel methods within the field of econometrics.

2 VAR and SVAR models

The basic VAR model has the reduced form representation
Y; :A1Y}_1+...+AI,Y}_p—|—ut. (1)

Here Y} is a K x 1 vector of contemporaneous variables, the A; (j =1,...,p) are
K x K coefficient matrices, u; is the K x 1 vector of random disturbances, which is
assumed to be a zero-mean white noise process (i.e. no correlations across time)
with contemporaneous covariance matrix E(u,u;) = ¥,. The VAR process is
called stable if det(Ix — A;z — ... — Ay2P) # 0 for all z € R such that |z| < 1
(Liitkepohl, 2006). It is well known that, given enough data, both the >, and all
the A; can be directly estimated (Canova, 1995).

To see that the VAR is not sufficient for policy analysis, consider the Wold
Moving Average (MA) representation of a stable VAR:

Y=Y ®jur, @
§=0

where & = I; and the ®; (j = 1,2,...) are coefficient matrices representing the
impulse responses of the elements of Y; to the disturbances u;_; (j = 0,1,2,...).
It is clear that this representation is not unique, because for any nonsingular K x K
matrix P we get:

}/; = Z CIJjPP_lut_j = Z \I]jgt—jﬁ (3)
j=0 Jj=0

where &,_; = P~ 'u,_j and ¥; = ®,P (j = 0,1,2,...). Thus the impulse re-
sponses given by the ¥; depend on the non-unique choice for P, so the response
to a shock or intervention on a given variable is not uniquely defined.

Thus, a Structural VAR (i.e. SVAR) is essentially a VAR equipped with a par-
ticular choice for P (as above) which uniquely determines the responses of the Y;
to shocks to any of the observed variables. The problem of SVAR identification

3
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then consists of finding the transformation P such that €, denote economically
interpretable shocks affecting Y; via the causal mechanism expressed by the ma-
trices W;. If we premultiply equation (1) by P~ we get

P, =P 'AY, 4.+ PTTAY, , + P lu,. (4)

Denoting I’y = P~1,T'; = P~'A; (j = 1,...,p), this equation can be written in
the standard SVAR form as

oY, =TYi1+... + DYep + e (5)

Usually P is chosen so that PP’ = ¥, which implies that the ; shocks are lin-
early uncorrelated. This is justified by the fact that distinct exogenous economic
shocks should be independent of each other, and independence implies linear un-
correlatedness. However, note that there are many choices for P which satisfy
this constraint. In particular, for any orthogonal matrix O we have PO(PO)" =
POO'P" = PP/, so if P is a solution then so is PO. One example of this in-
determinacy is that we can permute the variables in any desired order and then
obtain a lower-triangular P (using a Cholesky factorization) representing acyclic
contemporaneous causal connections between the Y;. Thus, in the literature, eco-
nomic theory is often used to select the most appropriate causal ordering of the
observed variables to fully specify the SVAR for use in policy analysis. Unfor-
tunately, there does not always exist sufficient theory to unambiguously order the
observed variables. This paper describes methods for inferring a good order based
on the characteristics of the data, as described below.
Let us define a new matrix B = I — P~' = I — I';,. Hence we obtain

Uy = But + Et, (6)

where the diagonal elements of B are all null and the off-diagonal elements denote
the direct effects among the contemporaneous variables. The SVAR identification
problem of estimating P is in this setting equivalent to estimating the direct effects
matrix B.

Graphical-model applications to SVARs seek to recover the matrix B, and
consequently, P, starting from tests on conditional independence relations among
the elements of u;. Conditional independence relations among uyy, . . . , Ux 1Im-
ply, under general assumptions clearly spelled out, the presence of some causal
relations and the absence of some others. Causal search algorithms, such as those
proposed by Pearl (2000) and Spirtes, Glymour, and Scheines (2000), exploit this
information to find the class of admissible causal structures among wy;, . . ., Ukt
(see also Bryant et al. 2009). In most of the cases, there are several causal struc-
tures belonging to this class, so the outcome of the search procedure is not a

4
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unique B. Bessler and Lee (2002), Demiralp and Hoover (2003), and Moneta
(2008) use partial correlation as a measure of conditional dependence, based on
the assumption that residuals are normally distributed.

In this paper, we similarly apply a graph-theoretic search algorithm aimed at
recovering the matrix B, but here we do not use conditional independence tests
or partial correlations. The (unique) causal structure among the elements of wu; is
captured by identifying their independent components through an analysis which
exploits any non-Gaussian structure in the residuals. While we present the search
algorithm in details in the next section, we should first ask whether the assumption
of non-normal residuals introduces some specificities in the way a VAR model is
formalized and estimated.

Several authors suggest to test for non-normality after the estimation of the
reduced form VAR model, as a model-checking procedure. For example, Liitke-
pohl (2006) maintains that “[a]lthough normality is not a necessary condition for
the validity of many of the statistical procedures related to VAR models, devia-
tions from the normality assumption may indicate that model improvements are
possible” (p. 491). However, it is the case of many studies that economic shocks
tend to deviate from normality, even after the inclusion of new variables and the
control of the lag structure. While it is true that one should be prepared to change
the model if some basic statistical assumptions are not satisfied, we suggest that
in case of non-Gaussianity one can alternatively exploit this characteristic of the
data for the sake of identification. Lanne and Saikkonen (2009) and Lanne and
Liitkepohl (2010) have also recently proved that non-Gaussianity can be useful for
the identification of the structural shocks in a SVAR model. In contrast with these
studies, however, we do not make specific distributional assumption but rather
allow any form of non-Gaussianity (thus, we use an essentially semi-parametric
approach).

In terms of VAR estimation, non-normality of the residuals yields a loss in
asymptotic efficiency in estimation. In particular, least squares estimation is not
identical to maximum likelihood estimation, as in the Gaussian setting. For in-
stance, it has been demonstrated that the least absolute deviation (LAD) estima-
tion method performs better than least squares when u; is non-normally distributed
(Dasgupta and Mishra, 2004). However, in the case of estimation of nonstation-
ary (nonstable) VAR with cointegrated variables, as the one considered in our
macroeconomic application below, Silvapulle and Podivinsky (2000) show that
Johansen’s (1995) procedure, although derived for the Gaussian distribution, is
robust for non-normal errors even in finite samples.

Under the assumption of non-Gaussianity, the fact that u, are white noises does
not imply that they are serially independent. This is a subtle, but important aspect
of non-Gaussian VAR, because even if corr(u, ui41y) = 0 (0 = 1,... k), it
is in principle possible that w1 is statistically dependent on u;;. In this latter

5
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case u;(;4+1) would not be an actual innovation term, since it can be predicted by
contemporaneous values of Y;. This point, as pointed out by Lanne and Saikkonen
(2009), is closely related to the issue of non-fundamental representations of the
VAR model (1), which arise when at least one of the roots of det(/x — A1z —...—
A,2P) lies inside the unit disc (for a survey on nonfundamentalness see Alessi et
al. 2008). We do not provide solutions to the non-fundamentalness problem here,
but it should be taken into account as a possible limitation of our work, to be
addressed in future research.

3 SVAR identification using non-Gaussianity

The fundamental fact that we make use of in this paper is that for non-Gaussian
random variables statistical independence is a much stronger requirement than
(linear) uncorrelatedness: while uncorrelatedness only requires that the covari-
ance matrix is diagonal, full statistical independence requires that the joint proba-
bility density equals the product of its marginals. Thus, rather than simply requir-
ing the shocks ¢; to be linearly uncorrelated, we require them to be completely
independent. For non-Gaussian data, this removes the SVAR indeterminacy (de-
scribed in Section 2) related to the orthogonal matrix O, allowing us to estimate
the contemporaneous causal ordering of the observed variables, as described be-
low.

3.1 Independent Component Analysis

The SVAR identification procedure relies heavily on a statistical technique termed
‘Independent Component Analysis’ (ICA) (Comon 1994; Hyvirinen et al. 2001;
Bonhomme and Robin 2009) both in terms of guarantees of identifiability and also
in terms of the actual algorithm employed. The technique can perhaps best be un-
derstood in relation to the well-known method of Principal Component Analysis
(PCA): while PCA gives a transformation of the original space such that the com-
puted latent components are (linearly) uncorrelated, ICA goes further and attempts
to minimize all statistical dependencies between the resulting components.
Specifically, in the SVAR context described in Section 2, the goal is to find
a representation u; = Pe; of the VAR residuals w;, such that the ¢, are mutu-
ally statistically independent. While a matrix P which yields uncorrelated ¢; can
always be found, for an arbitrary random vector u, there may exist no linear rep-
resentation with statistically independent €,. Nevertheless, one can show that if
there exists a representation with non-Gaussian, statistically independent com-
ponents ;! then the representation is essentially unique (up to permutation, sign,

lActually, one of the elements of ¢; can in fact be Gaussian, but there can be no more than one

6
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and scaling) (Comon, 1994), and there exist a number of computationally efficient
algorithms for consistent estimation (Hyvirinen ef al. 2001).

We illustrate the basic distinction between uncorrelatedness and statistical in-
dependence in Figure 1. Consider a density for ¢; uniform in the square [—1, 1] x
[—1, 1], as shown in panel (a). This (non-Gaussian) joint density factorizes (triv-
ially) so €1; and €5, are mutually independent. An arbitrary invertible linear trans-
formation P yields a density for u; = Pe; which is uniform inside a parallel-
ogram, as given in (b). Using PCA to rotate and re-scale the space yields &;
which are uncorrelated but statistically dependent, shown in panel (c). Finally,
the original components (up to permutation, sign, and scaling) are obtained by
searching for an orthogonal transformation to obtain statistically independent &,
in (d). Panels (e-g) illustrate that the final step to identify the original components
is not possible for Gaussian random variables, because of the spherical symmetry
of the joint distribution.

The main power of ICA algorithms is in determining this final orthogonal
transformation. The details differ, but all ICA algorithms try to minimize the
statistical dependencies between the estimated components. One prominent ap-
proach to doing this is making the estimated components maximally non-Gaussian.
(Some intuition for why maximizing non-Gaussianity of the estimated compo-
nents is related to reducing their mutual dependencies can be obtained by real-
izing that the densities of additive mixtures of independent random variables are
typically closer to Gaussian than the densities of the original variables; the limit
of which is represented by the central limit theorem.) For the interested reader, a
number of excellent tutorials on ICA are available, see e.g. (Hyvérinen and Oja,
2000; Cardoso, 1998). For a more thorough exposition, the reader is referred to
the textbook by Hyvirinen et al. 2001.

3.2 Identification of acyclic linear causal structure

To some extent, ICA directly provides a solution to the SVAR identification prob-
lem: if we succeed in finding a P~! yielding mutually independent &;, then these
components represent exogenous shocks to the system and the corresponding im-
pulse responses ¥ ; describe the impact of those shocks on the measured variables.
Unfortunately, it may be quite hard to directly interpret the shocks found by ICA
as they are not directly (in a one-to-one manner) tied to the measured variables,
and the shocks typically directly affect many (if not most) of the measured vari-
ables. In other words, there is no sense in which one could say that one measured
variable causally affects another.

We thus model instead the VAR residuals u; (see equation (6)) as deriving

such element (Hyvirinen ef al. 2001).
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Figure 1: Illustration of PCA and ICA and the role of non-Gaussianity. (a) The
joint density of two statistically independent standardized uniform random vari-
ables is uniform inside a square. (b) The density (uniform inside the parallel-
ogram) after a linear transformation of the space. Note that here the variables
are linearly dependent. (c¢) PCA, by first rotating and then rescaling the space,
yields uncorrelated but statistically dependent samples (uniform inside the rotated
square). The original components are not yet recovered. (d) ICA performs an ad-
ditional rotation of the space to minimize statistical dependencies, and is here able
to orient the space to obtain statistical independence. The original components are
recovered, although with an arbitrary permutation and arbitrary signs. (e) When
the original independent random variables are Gaussian (normal), the joint den-
sity is spherically symmetric (for standardized variables). In this case, from the
mixed data of panel (f), PCA already yields independent components but the com-
ponents are mixtures of the originals (g). Due to spherical symmetry, any rotation
of the space yields independent components, thus there is no further information
for ICA to use to find the original basis. Note that the Gaussian is the only density
where independent standardized variables yield a spherically symmetric density.

from an acyclic linear generative process where all diagonal elements of the ma-
trix B are zero and, furthermore, if the elements of u; were permuted into a causal
order (such that no ‘later’ element causally influences any ‘earlier’ element) the
corresponding B would be strictly lower triangular (i.e. all elements above the
diagonal would be zero as well). This generative process then describes the con-
temporaneous causal effects among the Y;.

We have u; = Pe; with P = (I — B)~'. Given independence and non-
Gaussianity of the ¢, the basic ICA result guarantees that P is essentially identifi-
able given sufficient i.i.d. samples w;, except for scaling, signs, and permutations
of the components. Fortunately, the restriction to acyclic systems B with a zero
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diagonal is enough to resolve these indeterminacies and yield full identification:
the zero diagonal in B fixes the scaling indeterminacy (since this forces the diag-
onal entries of P to unity, determining the scaling and signs uniquely), while the
lower-triangularity of B (for a correct ordering of the variables) ensures that there
is only one permutation of the columns of P which makes all of the diagonal en-
tries of P non-zero. In essence, acyclicity allows us to tie the components of ¢, to
the components of 1, in a one-to-one relationship.? The resulting method, termed
LiNGAM (for linear, non-Gaussian, acyclic model) was introduced by Shimizu
et al. 2006. Adapting the procedure to the identification of the SVAR model as
discussed in Section 2, the resulting VAR-LiNGAM algorithm is provided in Al-
gorithm 1. Further details and discussion can be found in Hyvirinen et al. 2008.?

Having identified B and a correctly permuted and normalized P, the correct
causal interpretation of the SVAR model is obtained by studying the I'; (and the
U ,) rather than the A;, for j = 1,...,p. In effect, the reduced form VAR co-
efficient matrices A; mix together the causal effects over time (the I';) with the
contemporaneous effects (53). In our application examples, we show examples of
how this distinction improves the interpretation of the results.

4 Microeconomic application: firm growth

4.1 Background and data

To demonstrate how the VAR-LiNGAM technique might be used in a microe-
conomic data application, we here apply it to analyze the dynamics of different
aspects of firm growth. In particular, we are looking at relationships between the
rates of growth of employment, sales, research and development (R&D) expendi-
ture, and operating income.

Previous attempts to investigate the processes of firm growth and R&D in-
vestment have been hampered by difficulties in establishing the causal relations
between the statistical series. Growth rates series are characteristically erratic and
idiosyncratic, which discourages the application of those microeconometric tech-
niques usually applied for addressing causality such as instrumental variables re-
gression and System GMM (Arellano and Bond, 1991; Blundell and Bond, 1998).

2 An alternative approach to estimating the causal order would be the following: For each of the
K possible variable orderings, estimate a corresponding P using the Cholesky decomposition (as
explained in Section 2) and compute a measure of the statistical dependence among the resulting
¢, and in the end select the variable ordering which minimizes the dependence. The ICA-based
procedure can be seen as a computationally efficient alternative to this algorithm, avoiding the
factorial number of possible variable orderings.

3The R code of the algorithm is available under request.
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Algorithm 1 VAR-LINGAM

1.

Estimate the reduced form VAR model of equation (1), obtaining esti-
mates A, of the matrices A, for - = 1,...,p. Denote by U the K x T
matrix of the corresponding estimated VAR residuals, that is each col-
umn of U is @, = (G, ..., 0xe), (¢ =1,...,T). Check whether the u;
(for all rows ) indeed are non-Gaussian, and proceed only if this is so.

Use FastICA or any other suitable ICA algorithm (Hyvarinen, Karhunen,
and Oja, 2001) to obtain a decomposition U = PE,where Pis K x K
and F is K x T, such that the rows of E are the estimated independent
components of U. Then validate non-Gaussianity and (at least approx-
imate) statistical independence of the components before proceeding.

Let Ty = P~!. Find Iy, the row-permuted version of I, which minimizes
S, 1/|T,,| with respect to the permutation. Note that this is a linear
matching problem which can be easily solved even for high K (Shimizu,
Hoyer, Hyvarinen, and Kerminen, 2006).

. Divide each row of T, by its diagonal element, to obtain a matrix I, with

all ones on the diagonal.

Let B=1—T,.

. Find the permutation matrix Z which makes ZBZ” as close as possi-

ble to strictly lower triangular. This can be formalized as minimizing the
sum of squares of the permuted upper-triangular elements, and min-
imized using a heuristic procedure (Shimizu, Hoyer, Hyvérinen, and
Kerminen, 2006). Set the upper-triangular elements to zero, and per-
mute back to obtain B which now contains the acyclic contemporane-
ous structure. (Note that it is useful to check that ZBZ” indeed is close
to strictly lower-triangular.)

B now contains K (K —1)/2 non-zero elements, some of which may be
very small (and statistically insignificant). For improved interpretation
and visualization, it may be desired to prune out (set to zero) small
elements at this stage, for instance using a bootstrap approach. See
(Shimizu, Hoyer, Hyvarinen, and Kerminen, 2006) for details.

Finally, calculate estimates of [,,7=1,...,p, for lagged effects using
I, =(I—B)A,

10
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In addition, the use of Gaussian estimators is inappropriate because growth rates
and residuals typically display non-Gaussian, fat-tailed distributions.

We base our analysis on the Compustat database, which essentially covers US
firms listed on the stock exchange. We restrict ourselves to the manufacturing
sector (SIC classes 2000-3999) for the years 1973-2004; the reason for starting
from 1973 is that the disclosure of R&D expenditure was made compulsory for
US firms in 1972. Since most firms do not report data for each year, we have an
unbalanced panel dataset.

The variables of interest are Employees, Total Sales, R&D expenditure, and
Operating Income (sometimes referred to as ‘profits’ in the rest of this paper).
We replace operating income and R&D with O if the company has declared the
relevant amount to be “insignificant”. In order to avoid misleading values and the
generation of NANs (not-a-number entries) whilst taking logarithms and ratios,
we now retain only those firms with strictly positive values for operating income,
R&D expenditure, and employees in each year. This creates some missing values,
especially for our growth of operating income variable.

Growth rates were calculated as log-differences of size for firm 7 in year ¢, i.e.:

AY; = log(Yi) — log(Yii-1) (7)

where Y is any one of employment, sales, R&D expenditure, or operating income,
and AYj, is the corresponding growth rate of that variable for that firm and that
year. Any time-invariant firm-specific components have thus been removed in the
process of taking differences (i.e. growth rates) rather than focusing on size levels.
Although the dynamics of firm size levels displays a high degree of persistence
(some authors relate the dynamics of firm size to a unit root process (see e.g.
Goddard er al. 2002), growth rates have a low degree of persistence, with the
within-firm variance being observed to be higher than the between-firm variance
(Geroski and Gugler, 2004). In our regressions, firms are pooled together under
the standard panel-data assumption that different firms undergo similar structural
patterns in their growth process.*

Although all variables are positively correlated with each other, the correlation
is far from perfect. The highest correlation is between sales growth and employ-
ment growth (0.63), while the lowest correlation is between R&D growth and

“In further cointegration analysis, we select individual firms from the unbalanced panel that
are present for the full time period and observe their growth dynamics. Comparing results ob-
tained from time-series analysis of individual firms shows that these firms do indeed seem to have
common structural patterns in their growth process. We also tested the hypothesis of panel coin-
tegration, i.e. the presence of cointegrating relationships among the four variables in levels for all
the firms, using the test proposed by Larsson et al. 2001. The null hypothesis was rejected for all
possible cointegration ranks.

11
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operating income growth (0.06). Thus, each of the four variables reflects a differ-
ent facet of firm growth and firm behavior. More details concerning the dataset,
as well as summary statistics, can be found in (Coad and Rao, 2010).

4.2 Results

As outlined in Section 3, our procedure consists of first estimating a reduced-form
VAR model and subsequently analyzing the statistical dependencies between the
resulting residuals, to finally obtain corrected estimates of lagged effects.

Table 1 (a) shows the results of LAD estimation of a 1- and 2-lag reduced-
form VAR.> Although most of the coefficients are statistically significant (at a
significance level of 0.01), the strongest coefficients relate growth of employment
and sales at time ¢ to growth of all variables at time ¢ + 1. Additionally, operating
income displays a strong negative autocorrelation in its annual growth rates. These
results are essentially identical to those obtained by Coad and Rao (2010).

Next, we investigated the statistical structure of the residuals. Figure 2 presents
histograms with overlaid Gaussian distributions and quantile-quantile plots along-
side the Gaussian benchmark of the empirical distributions of the residuals in the
1-lag model (the plots look similar for the 2-lag model). Both the histograms and
the qqg-plots lead us to reject the hypothesis of Gaussian residuals. Furthermore,
Shapiro-Wilk normality tests in both the 1-lag and 2-lag models clearly reject the
null hypothesis of Gaussian distributions (p < 10~ for all four residuals).

Contemporaneous causal effects are then estimated using steps 2 to 7 from
Algorithm 1 given in Section 3. The instantaneous effects returned by VAR-
LiNGAM form a fully connected DAG for both the 1- and 2-lag models. Using
a bootstrap approach to test the stability of the results, the variables were in an
overwhelming majority of cases ordered by VAR-LiINGAM as sales growth first,
then employment growth, R&D growth, and operating income growth last. The
coefficients obtained for this variable ordering are shown in Table 2 for both the
1-lag and the 2-lag models, with only relatively small differences between the
two. Testing the structural residuals (¢, = (I — B)u,) for non-Gaussianity with a
Shapiro-Wilk test yields p-values smaller than 10~°° for all four variables in both
models. Histograms and qq-plots look similar to the ones in Figure 2.

Finally, we can obtain the corrected lagged effects as given by step 8 of Algo-
rithm 1. These are shown in Table 1 (b). Figures 3 and 4 show the final estimated
VAR-LiINGAM models graphically, displaying both contemporaneous effects B

>We follow Coad and Rao (2010) and estimate 1- and 2-lag VARs. However, even in the 2-
lag VAR, the VAR residuals display autocorrelation that is small (of magnitude 0.011 or lower)
but nonetheless statistically significant. This AR structure in the residuals is completely removed
when 4 lags are taken. We repeated the analysis with 4 lags, but the results were qualitatively
unchanged.

12
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Table 1: Coefficients of lagged effects from VAR estimates (using LAD) and
VAR-LiINGAM estimates with 1 and 2 time lags including standard errors. The
number of observations in the 1-lag and 2-lags models were 33,166 and 28,538,
respectively. The coefficients in bold are significantly different from zero using a
t-test at significance level 0.01. (The table is read column to row so, for instance,
in the 1-lag model the VAR coefficient from sales growth fo employment growth

1s 0.1383.)
a) VAR model
A, Ay

empl.gr sales.gr rnd.gr opinc.gr | empl.gr sales.gr rnd.gr opinc.gr
Empl.gr | 0.0590 0.1383 0.0188  0.0067
St.error 0.0093 0.0091 0.0025 0.0016
Sales.gr | 0.3221 0.0437 0.0073  0.0045
St.error 0.0096 0.0069 0.0030 0.0022
RnD.gr 0.2164 0.1792 -0.0054 0.0276
St.error 0.0107 0.0136 0.0078 0.0037
Oplnc.gr | 0.1905 0.2624 -0.0258 -0.1468
St.error 0.0157 0.0204 0.0060 0.0107
Empl.gr | 0.0404 0.1017 0.0166 0.0122 | -0.0029 0.0633 0.0181  0.0053
St.error 0.0080 0.0086 0.0032 0.0021 0.0072 0.0072 0.0022 0.0023
Sales.gr | 0.3200 0.0060 0.0140 0.0038 | 0.0259 0.0037 0.0169 -0.0035
St.error 0.0110 0.0094 0.0036 0.0024 0.0078 0.0079 0.0042 0.0026
RnD.gr 0.2122  0.0935 -0.0175 0.0460 | 0.0047 0.0932 -0.0040 0.0229
St.error 0.0128 0.0159 0.0080 0.0041 0.0090 0.0112 0.0068 0.0040
Oplnc.gr | 0.1893 0.3773 -0.0195 -0.2272 | -0.0405 0.0771 0.0156 -0.1164
St.error 0.0196 0.0289 0.0076 0.0155 0.0182 0.0216 0.0074 0.0118
b) VAR-LiINGAM model

I I

empl.gr sales.gr rnd.gr opinc.gr | empl.gr sales.gr rnd.gr  opinc.gr
Empl.gr | -0.1606 0.1085 0.0138  0.0036
St.error 0.0098 0.0090 0.0030 0.0016
Sales.gr 0.3221 0.0437 0.0073  0.0045
St.error 0.0096 0.0069 0.0030 0.0022
RnD.gr 0.0743 0.1213 -0.0139  0.0239
St.error 0.0109 0.0133 0.0077 0.0036
Oplnc.gr | -0.4334 0.2442 -0.0357 -0.1499
St.error 0.0214 0.0203 0.0059 0.0099
Empl.gr | -0.1774 0.0977 0.0071  0.0096 | -0.0205 0.0608 0.0066  0.0076
St.error 0.0107 0.0097 0.0031 0.0024 0.0068 0.0068 0.0027 0.0019
Sales.gr 0.3200 0.0060  0.0140 0.0038 | 0.0259 0.0037 0.0169 -0.0035
St.error 0.0110 0.0094 0.0036 0.0024 0.0078 0.0079 0.0042 0.0026
RnD.gr 0.0588 0.0636 -0.0282  0.0410 | 0.0061 0.0746 -0.0164  0.0230
St.error 0.0122 0.0144 0.0077 0.0039 0.0086 0.0112 0.0070 0.0039
Oplnc.gr | -0.4260 0.4080 -0.0457 -0.2251 | -0.0937 0.1010 -0.0141 -0.1047
St.error 0.0212 0.0291 0.0077 0.0141 0.0162 0.0211 0.0078 0.0102
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Table 2: Coefficient matrices B of instantaneous effects from VAR-LINGAM with
1 and 2 time lags, respectively, including standard errors. The number of obser-
vations in the 1-lag and 2-lag models were 33,166 and 28,538, respectively. The
coefficients in bold are significantly different from zero using a t-test at signifi-
cance level 0.01.

VAR-LiNGAM with 1 lag VAR-LiNGAM with 2 lags
empl.gr sales.gr rnd.gr opinc.gr | empl.gr sales.gr rnd.gr opinc.gr
Empl.gr 0 0.6819 0 0 0 0.6806 0 0
St.error 0 0.0097 0 0 0 0.0109 0 0
Sales.gr 0 0 0 0 0 0 0 0
St.error 0 0 0 0 0 0 0 0
RnD.gr 0.2969 0.3867 0 0 0.2676  0.4456 0 0
St.error 0.0206 0.0220 0 0 0.0191 0.0216 0 0
Oplnc.gr | -0.3366 2.0997 -0.1504 0 -0.2983  2.0498 -0.1349 0
St.error 0.0302 0.0326 0.0128 0 0.0284 0.0364 0.0115 0
Employment growth Sales growth R&D growth Op. Income growth
< _ 3 .
o
o N
[32)
™ 4 i 0 o
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Figure 2: Results from residuals of 1-lag VAR. Top row: histograms of residuals
with overlaid Gaussian distribution with corresponding mean and variance (red
line); Bottom row: normal quantile-quantile-plots of residuals.
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Sales.gr(t)

4,

Figure 3: Plot of results from VAR-LINGAM-estimates with one time lag. Solid
green arrows indicate positive effects, dashed red arrows negative ones. Thick
edges correspond to strong effects, thin edges to weak effects.

and lagged effects (green solid arrows denote positive effects, while red dashed
arrows indicate negative effects).

4.3 Discussion

First, consider the instantaneous (contemporaneous) effects. Growth in sales has
a strong positive effect for growth in all other variables (and profits in particular),
while growth in employment has a positive effect on R&D but a negative effect on
profits. These results make economic sense, as sales are often seen as the driving
factor for growth in theoretical work, and much of research and development costs
are employment costs. Furthermore, growth of R&D expenditure has a negative
instantaneous effect on profits, as under US tax law R&D expenditure is treated
as an operating expense and is deducted from operating income as a cost (since
profit = revenue - cost). One finding of policy relevance is that growth of employ-
ment and sales are significant determinants of both instantaneous and subsequent
growth of R&D expenditure, but that growth of operating income has no major
effect on R&D growth (neither an instantaneous nor a lagged effect).

The VAR-LINGAM estimates of lagged effects are generally similar to the
reduced-form VAR estimates, but there are nonetheless some large differences
(see Table 1) that mainly concern the contribution of employment growth to growth
in the other variables. First, the autocorrelation coefficient for employment growth
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Sales.gr(t) )

'
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'

Figure 4: Plot of results from VAR-LINGAM-estimates with two time lags. Solid
green arrows indicate positive effects, dashed red arrows negative ones. Thick
edges correspond to strong effects, thin edges to weak effects.

changed from being small and positive to rather large and negative. Second, the
contribution of employment growth (and also sales growth) to subsequent growth
of R&D expenditure decreases considerably in magnitude, although growth of
employment and sales still have a much larger impact on subsequent R&D growth
than does growth of operating income. Third, the VAR estimates suggest that
employment growth is positively associated with (subsequent) growth of profits,
while the corresponding VAR-LiINGAM coefficient is strongly negative. The VAR
result is rather simplistic, because it does not separate the direct negative effect
of employment on profits (because employment is a cost) from the indirect posi-
tive effect (employment at time ¢ increases profits at ¢ + 1 via increased sales at
t + 1). We therefore prefer the VAR-LINGAM estimates because they go further
than naive associations to shed light on the underlying causal relationships.

To summarize, we began by applying VAR-LINGAM to the instantaneous re-
lationships between variables, by looking at the residuals of a reduced-form VAR.
The instantaneous VAR-LINGAM results we obtained made sense and could be
explained by referring to both economic theory and previous results from reduced-
form VAR models. We then proceeded to investigate both the instantaneous and
lagged effects.

There are some policy implications that can be briefly mentioned. First, our
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results show that growth of employment and sales have a positive effect on R&D
growth, while profits growth has no such effect. These findings cast doubts on
mainstream innovation policy, which seems to hold that firms need to be allowed
to make large profits (via e.g. tax breaks, subsidies, overly-rigid patent protection,
etc.) before they invest in R&D. For example, Scherer (2001) observes cointegrat-
ing aggregate trends in industry profits and R&D expenditure and speculates about
a ‘virtuous cycle’ whereby firms are keen to reinvest their profits into R&D. The
theoretical model in Lentz and Mortensen (2008) holds that firms that make more
profits will invest these profits in R&D. Other authors, however, have been critical
of innovation policies based on this intuition (see for example Dosi et al. 2006).
Our VAR-LiINGAM results therefore provide valuable new insights into the causal
relations between firm growth, firm performance and R&D expenditure. One par-
ticular policy recommendation could be the following. If the government wants
firms to invest more in R&D, our results suggest that it might be more effective to
encourage innovators to aim for sales growth (perhaps through exporting) rather
than to aim for profits growth.

Second, our results have the power to reject ‘replicator dynamics’ theories
of firm growth that suppose that profits are automatically reinvested in the firm,
thus having a major positive effect on growth rates (i.e. growth of employment or
sales). While a number of influential theoretical models rely on the mechanism of
replicator dynamics (e.g. Nelson and Winter 1982 and Metcalfe 1994), our empir-
ical results do not concur. Instead, our empirical analysis indicates that financial
performance appears to have no major influence on firm growth (measured in
terms of sales growth or employment growth). This corroborates an earlier study
on French data which used System GMM to show that profit rates had a negligible
influence on employment growth and sales growth (Coad, 2007). Furthermore, ev-
idence from Italian data has shown a conspicuous absence of the expected positive
relationship between financial performance and firm growth (Dosi 2007, Bottazzi
et al. 2008). The added value of our study on this issue is that we address issues
of causality concerning both instantaneous and lagged effects.

5 Macroeconomic application: the effects of mone-
tary policy

5.1 Background and data

As a second empirical application we show how VAR-LiNGAM might be ap-
plied to analyze the effects of changes in monetary policy on macroeconomic
variables. Structural VARs are often applied to describe the dynamic interac-
tion between monetary policy indicators and aggregate economic variables such
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as income (GDP) and price. Results are then used both for policy evaluation
and for judging between competing theoretical models. Unfortunately, modeling
causal links between central bank decisions and the status of the economy has en-
countered major problems: it is not clear which time series variable best captures
changes in monetary policy, and there is no agreement on the method to identify
the structural VAR. As explained in section 2, the choice of the ‘right rotation’
of the model relies on the identification of the contemporaneous causal structure.
We show how the VAR-LINGAM method offers one solution to the latter prob-
lem. Once the model is identified, this helps to answer also the question about the
indicator of monetary policy changes and the measurement of their effects on the
economy.

Our study is based on Bernanke and Mihov’s 1998 data set, which consists of
6 monthly time series US data (1965:1-1996:12)%, three of which are policy vari-
ables: T'R;: total bank reserves (normalized by 36-month moving average of total
reserves); NBR;: nonborrowed reserves and extended credit (same normaliza-
tion); and FF'R,: the federal funds rate. The other three variables are non-policy
macroeconomic variables: GDP,: real GDP (log); PGDP,: the GDP deflator
(log); and PSCCOM : the Dow-Jones index of spot commodity prices (log). An
important underlying assumption in the structural VAR model is that each variable
is affected by an independent shock. Since nonborrowed reserves are part of total
reserves, it is likely that a shock affecting NBR; is correlated with a shock affect-
ing T'R;. To render our independence assumption more plausible, we replace T'R;
with BR, = (TR, — NBRy).

Phillips-Perron tests do not reject the hypothesis of a unit root for each of the
six series considered. We estimate the model as a system of cointegrated variables
(vector error correction model), using Johansen and Juselius’ 1990 procedure. Al-
though this procedure is based on maximum likelihood estimation and it assumes
normal errors, it is robust for non-normality, as demonstrated by Silvapulle and
Podivinsky (2000). We will, however, check for the robustness of our results
across different estimation methods. We select the number of lags (seven) using
Akaike’s information criterion.

5.2 Results

The histograms of the six residuals 4, are displayed in Figure 5, together with the
respective q-q plots. These suggest departures from normality for each of the six
residuals, although in a much less evident manner for the GDP and PGDP residu-

The data set was downloaded from Ilian Mihov’s webpage:
http://www.insead.edu/facultyresearch/faculty/personal/imihov/documents/mmp.zip
The same dataset was also used by Moneta (2004)
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als. The p-values of the Shapiro-Wilk normality test are 0.0104, 0.0215, 1.8e-05,
2.4e-15, 6.3e-20, 1.9e-07, for the residuals referring to GDP, PGDP, NBR, BR,
FFR, and PSCCOM respectively. The Shapiro-Francia test produces similar re-
sults, except that normality for the first two residuals is more clearly rejected, with
the following p-values (same order): 0.0044, 0.0097, 1.3e-05, 6.8e-14, 9.5¢e-18,
1.9e-07. The Jarque-Bera tests yield analogous results. All these numbers sup-
port the hypothesis of non-normality for all residuals and permit us to apply the
VAR-LiINGAM procedure described in section 3.

Table 3 (a) displays the estimates of the VAR model in levels Y; = A,Y; ; +
...+ A;Y,_7+u,. For reasons of space, we report the estimates of A; and A, only.
Table 3 (b) presents the estimates of I'; and I's from the structural equation (iden-
tified through the VAR-LINGAM method): I'0Y; = I''Y;— + ... + Y7 + &4
The estimates of the instantaneous effects B = (I — I') are displayed in Table 4.
Figure 6 shows contemporaneous and lagged (until 2 lags) effects. These results
provide useful information both about the mechanism operating in the market for
bank reserves and about the mutual influences between policymakers’ actions and
the state of the economy. As regards the market for bank reserves, a useful start-
ing point for reviewing the results is to look at the mechanism operating among
the policy variables NBR, BR, and FFR. Among these variable the contempo-
raneous causal structure is F'F'R; < BR; — NBR;. BR measures the portion
of reserves that banks choose to borrow at the discount window. This variable is
usually assumed to depend on F'F'R, which is the rate at which a bank, in turn, can
lend the borrowed reserves to another bank.” Our results suggest that F'FR takes
more than one month to influence BR, since the (4, 5) entry of matrix B is zero
(see Table 4), while the (4,5) entry of matrix I'; is positive (see Table 3). NBR
measures all the bank reserves which do not come from the discount window and
is, as expected, correlated with BR, which positively influences NBR with a one
month lag. F'FR is probably the variable which is most representative of the tar-
get pursued by the Fed, as the impulse response functions analyzed below suggest
and as argued by Bernanke and Blinder (1992). If this is true, our results indi-
cate that the Fed observes and responds to changes of demand for (nonborrowed
and borrowed) reserves within the period, although only the coefficient describing
the contemporaneous influence of BR; on FFR, (and not of NBR; on FFR,) is
significant. Notice that F'F'R responds positively to BR within the period, but neg-
atively in the subsequent periods, probably in order to compensate for the fact that
if FFR continued to rise, banks would have the incentive to borrow more reserves
from the discount window and to lend them again to other banks. Concerning

" BR depends (negatively) also on the discount rate, which is an infrequently changed admin-
istrative rate and, as argued by Bernanke and Mihov (1998: 877), cannot be modeled as a further
variable in the VAR model. In our framework changes in the discount rate should be seen as
entering in the innovation term € g, affecting BR;.
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the relationships between policy variables (BR;, NBR;, and F'F'R;) and variables
describing the state of the economy (GDP, PGDP, and PSCCOM), our results
suggest that within the period the Fed observes and reacts to macroeconomic vari-
ables, but that policy actions have significant effects on the economy only with
lags. Regarding significant lagged effects, we see that GDP is affected positively
by NBR only with a two-month lag (and also with 4, 6 and 7 month lags, which
are not displayed on the table).

Figure 7 displays the impulse response functions of GDP, PGDP and FFR
to one-standard-deviation shocks to NBR, BR, and FFR, with 99 percent confi-
dence bands. The responses to NBR shocks are shown in the first column of the
figure, while the responses to BR and F'F'R are displayed in the second and third
column, respectively. Qualitatively, the dynamic responses to BR and FFR are
quite similar: in both cases output falls and the federal fund rate rises, especially
in the first months. The price level responds quite slowly, but in the case of the
BR shock price rises, while in the case of the F'F'R shock price eventually falls.
After a NBR shock, output rises, but only between the second and fourth month
after the shock, after which it goes down again. Price rises quite rapidly and F/F'R
responds very slowly. As discussed more at length in section 5.4, these results
confirm, to quite some extent, the interpretation of the NBR innovation term as
an expansionary policy shock and the interpretation of the BR and F'F'R as con-
tractionary policy shocks. However, they suggest that the F'F'R shock is a better
indicator of the monetary policy shock, since its responses conform better to the
“stylized facts” established in the literature.

5.3 Robustness analysis

We consider several modifications of our estimation method. To allow for possi-
ble regime changes, we estimate our model for selected subperiods, i.e. 1965:1
- 1979:9; 1979:10 - 1996:12; 1984:2 - 1996:12; and 1988:9 - 1996:12. These
are the subperiods already considered by Bernanke and Mihov (1995) on the ba-
sis of both historical evidence about changes in some operating procedures of the
Fed and tests for structural changes. In particular, September 1979 is the date
in which Paul Volcker became chairman of the Fed and February 1984 reflects
the end of the “Volcker experiment”, that is a monetary policy characterized by
a greater weighting attached to achieving price stability, which was accompanied
by very high federal funds rates. September 1988 marks the beginning of the
Greenspan era. Figure 8 displays the impulse response functions obtained for
the different subsamples. Responses differ quite remarkably across subsamples.
In the subsample 1965:1 - 1979:9, both the responses of GDP and PGDP are
clearly positive to the NBR shock, as it should be expected after an expansionary
policy shock. This evidence is consistent with the hypothesis that the NBR shock
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Figure 5: Results from residuals of 7-lag VECM. Top row: histograms of residuals
with overlaid Gaussian distribution with corresponding mean and variance (red
line); Bottom row: normal quantile-quantile-plots of residuals.
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Table 4: Coefficient matrices B of instantaneous effects from VAR-LINGAM with
7 time lags including standard errors. The number of observations was 384. The
coefficients in bold are significantly different from zero using a t-test at signifi-
cance level 0.01.

VAR-LINGAM
GDP PGDP NBR BR FFR PSCCOM
GDP 0 0.0306 0 0 0 0
St.error 0 0.1248 0 0 0 0
PGDP 0 0 0 0 0 0
St.error 0 0 0 0 0 0
NBR -0.0669  0.6927 0 -0.8625 0 0
St.error 0.0946 0.2221 0 0.0393 0 0
BR 0.0917 -0.1135 0 0 0 0
St.error 0.1070 0.2377 0 0 0 0
FFR 10.3780 6.6784  3.8444 27.1121 0 0.0835
St.error 4.9632 13.0945 2.1471 4.1606 0 1.1796
PSCCOM | 0.1008 1.0627 -0.1408 0.1404 0 0
St.error 0.2343 0.5504 0.1041 0.1356 0 0

PGDP(t-1 »( PGDP(t)

e

NBR(t)
,’/

.--“'V

Figure 6: Plot of results from VAR-LiNGAM-estimates only showing 2 of the 7
time lags. Solid green arrows indicate positive effects, dashed red arrows negative
ones. Thick edges correspond to strong effects, thin edges to weak effects.
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Figure 7: Responses of Output, Prices, and the Federal Funds Rate to NBR, BR,
and FFR shocks with 99% confidence bands.
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is a good measure of the (expansionary) monetary policy shock in that period. In
the sample 1979:10 - 1996:12 after BR and F'F'R shocks income falls, while the
interest rate rises, at least in the first months (prices remain quite stable). This is
consistent with the fact that both BR and FF'R shocks are indicators of contrac-
tionary monetary policy shocks in that period. Similar considerations can be made
for the sample 1984:2 - 1996:12, in which price falls more clearly after the BR
and F'FR shocks. In the last sample taken into consideration (1988:9 -1996:12)
the evidence is also consistent with BR and F'F'R shocks as indicators of contrac-
tionary monetary policy shocks: in both cases outcome falls, price remain quite
stable, and F'F'R rises, although only slightly after the BR shock.

The contemporaneous causal order (PGDP, GDP, BR, NBR, PSCCOM, FFR)
turns out to be stable across subsamples, except for the period 1984:2 - 1996:12, in
which the within period causal order is PGDP, NBR, GDP, BR, PSCCOM, FFR.
Concerning lagged causal relationships, the structure is quite stable across sub-
samples, but there are several changes in signs and magnitudes. For instance,
PGDP,_, affects FFR, with a negative coefficient (—2.86) in the full sample, and
in all other subsamples except for the period 1965:1 - 1979:9, in which GDP;_,
affects I'F'R, through a coefficient equal to 18.58. Notice that in the same period
PGDP responds positively to exogenous shocks to FFR.

We also estimated the model using a series of different estimation methods,
namely OLS, LAD, and FM-LAD (Fully Modified Least Absolute Deviation, pro-
posed by Phillips 1995). All these methods deliver the same contemporaneous
causal order, and the coefficients of the respective B matrices of the instantaneous
effects have quite similar magnitudes and the same sign (except for the influence
of NBR; on FFR,; which turns out to be negative in the FM-LAD case, while is
positive but statistically insignificant in all the other cases).

5.4 Discussion

Shocks to NBR, BR, and F'FR represent all the sources of variations in central
bank policy which are not due to systematic responses to variations in the state of
the economy. Shocks to policy variables can be interpreted as exogenous shocks
to the preferences of the monetary authority (preferences about the weight to be
given to growth and inflation, for example), as exogenous variations in monetary
policy due to the fact that the Fed inevitably tends to fulfill some of the (stochas-
tic) expectations of agents, and, finally, as measurement errors (see Christiano,
Eichenbaum, and Evans (1999), pp. 71-72). There is a large debate as to which
variable best reflects policy actions. Bernanke and Blinder (1992), for instance,
argue that the Fed mainly targets the federal funds rate and policy shocks are
therefore reflected in innovations to £'/F'R. Christiano and Eichenbaum (1991), on
the other hand, claim that policy shocks are better measured by shocks to NBR,
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Figure 8: Responses of Output, Prices, and the Federal Funds Rate to NBR, BR,
and FFR shocks for four different subsamples and the whole period.
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while Cosimano and Sheehan (1994) provide evidence that, at least for certain
periods, the Fed has targeted borrowed reserves. This would imply that the policy
shock is proportional to the innovation to BR. The sign of the shocks matters,
of course. If the policy relevant shocks are those to F'F'R or BR, these should be
interpreted as contractionary monetary policy shocks (i.e. seeking to reduce the
money supply). If the relevant shock is the NBR innovation, this should be seen
as an expansionary policy shock. While there is no consensus about the right mea-
sure of the policy shock, there is a considerable agreement about the qualitative
effects of a monetary policy shock. As argued by Cristiano et al. (1999, p. 69),
“the nature of this agreement is as follows: after a contractionary monetary policy
shock, short term interest rates rise, aggregate output, employment, profits and
various monetary aggregates fall, the aggregate price level responds very slowly,
and various measures of wages fall, albeit by very modest amounts.” As regards
the full sample 1965-1996, the F'F'R shock is the shock which better conforms
to this pattern. However, in the first subsample analyzed (1965-1979) the NBR
shock (with the opposite sign) is the shock which is the most consistent with the
stylized facts of Christiano et al. (1999). In the subsequent subsamples both the
BR and FFR shocks are conforming quite well. In sum, this suggest that the Fed
may have changed its policy instrument across years: in previous years NBR was
the variable which responded better to policy shocks, and in the subsequent years
this role has been taken by BR and FFR.

6 Conclusion

We have described a new approach to the identification of a structural VAR, ap-
plicable when the reduced-form VAR residuals are non-Gaussian. This approach
is based on a recently developed technique for causal inference (LINGAM) devel-
oped in the machine learning community. The technique exploits non-Gaussian
structure in the residuals to identify the independent components corresponding
to unobserved structural innovation terms. Assuming a recursive structure among
the contemporaneous variables of the VAR, the technique is able to uncover causal
dependencies among the relevant variables. This permits us to analyze how an in-
novation term is propagated in the system over time.

We have applied this method to two different databases. In the first applica-
tion we have analyzed the relationship between firm performance and R&D in-
vestment. We find that sales growth has a relatively strong influence on growth of
all other variables: employment, R&D expenditure, and operating income. Em-
ployment growth also has a strong influence on subsequent sales growth. Growth
of operating income has little effect on growth of any of the other variables, how-
ever, which leads us to question the implications emerging from some theoretical
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models.

In the second application we have examined the mutual effects between mon-
etary policy and macroeconomic performance and have addressed the issue of the
appropriate indicator of the monetary policy shock. We find that within the period
of one month the central bank monitors the conditions of the economy, but the
economy responds to central bank policy with lags. On the basis of the consensus
existing in the literature about the qualitative effect of a monetary policy shock,
we find that the shock to the federal funds rate is the shock that most appropri-
ately reflects innovations in monetary policy. However, taking into account some
sub-samples, we find evidence that in some periods the non-borrowed reserve
shock and the borrowed reserve shock are better indicators of the exogenous pol-
icy shock. This suggests that the Fed has changed the target of its policy several
times between 1965 and 1995.

The method proposed has the advantage of being data-driven: identification
of the model is reached without advocating theoretical intuitions about causal de-
pendencies. Our approach, however, is based on some assumptions, which may
be seen as limitations. One possible drawback is the underlying assumption of
recursiveness (acyclicity). Although the recursiveness assumption is quite com-
mon in the literature on structural VARs, it is in principle possible that there are
causal directed cycles among variables within the measured period. Lacerda et al.
(2008) generalized the ICA-based approach to causal discovering, by relaxing the
assumption that the underlying causal structure has to be acyclic. This method
is yet to be applied to the SVAR framework. Other assumptions which might be
alternatively relaxed in future research are causal sufficiency (allowing the possi-
bility of confounding latent variables) and the related assumption that the number
of independent components is equal to the number of observed variables.
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